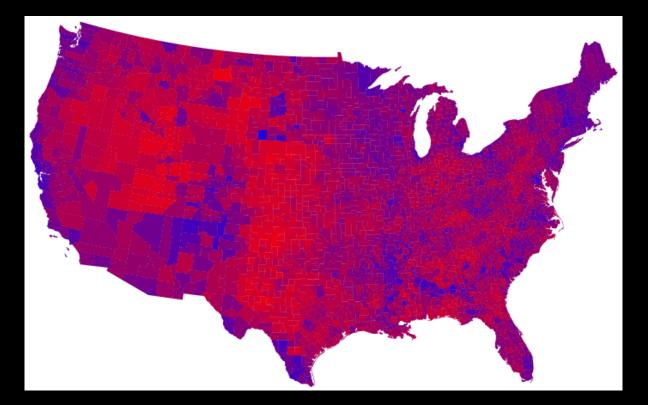
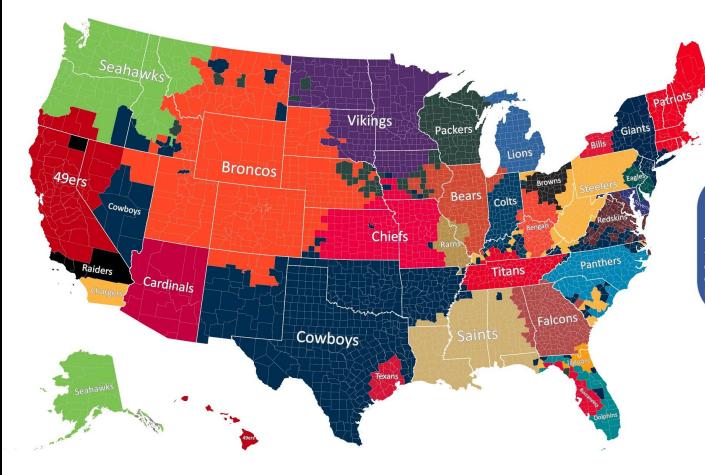
Mathematical Modeling of Social Phenomena

Mixed bag/Epidemiology

Class Layout

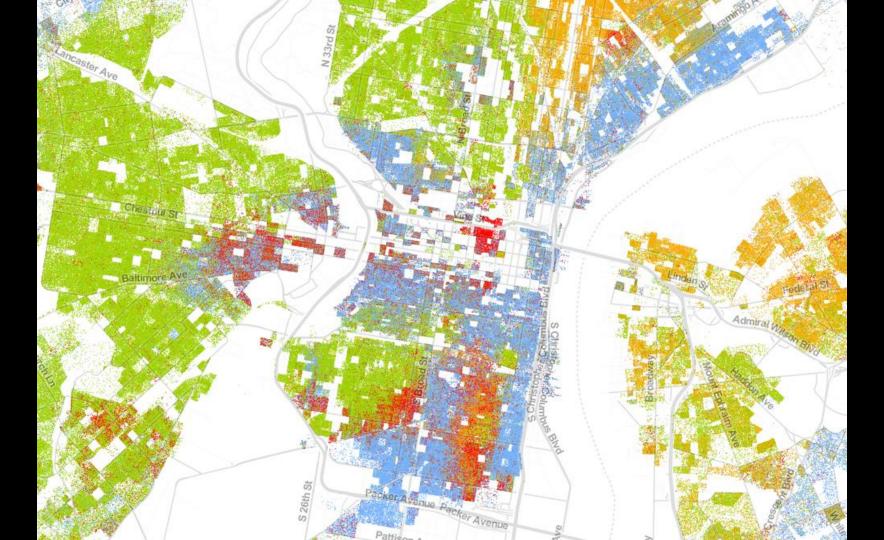

- Identification
- Preference aggregation
- Epidemiology
- Simulated epidemiology
- Markov processes


Identification

What is the better explanation?

Identification - what explains?

Homophily Peer effects



Facebook Fandom Map 2014 National Football League

This map displays Facebook fans of NFL teams across the United States. Each county is color-coded based on which official team page has the most "Likes" from people who live in that county.

* The New York Jets do not have a plurality of fans in any U.S. county.

ldentification

We see this: A: XYXYXX **B: YYYXXY** Next we see: A: XXXXXX **B: YYYYYY**

Could be peer effects? Could be homophily? Yes, yes, ...

And to know which one, we need "dynamic data"

Preference

Aggregation

Preferences

What are your preference orderings over the colors: Red, green, blue?

How many preference orderings exist?

How many transitive preference orderings exist?

Preference aggregation

Method: Pairwise vote (write them at the board)

Individual	Ordering
Laura	R > G > B
Alexander	G > B > R
Ernesto	B > R > G

Preference aggregation

Vote	Result	
Green vs. Red	L & E: Red, .	A: Green
Blue vs. Green	A & L: Green	n, E: Blue
Red vs. Blue	E & A: Blue,	L: Red
Red > Green > Blue	> Red	Intransitive!!

Preference aggregation

Condorcet paradox!

Epidemiology

Diffusion, SIS and networks

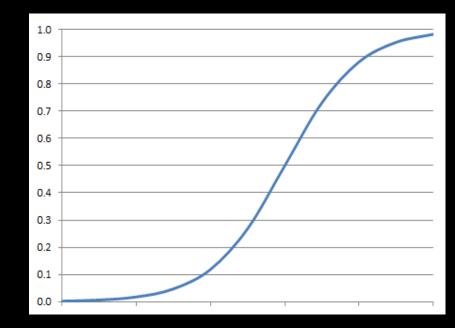
Diffusion model

Let

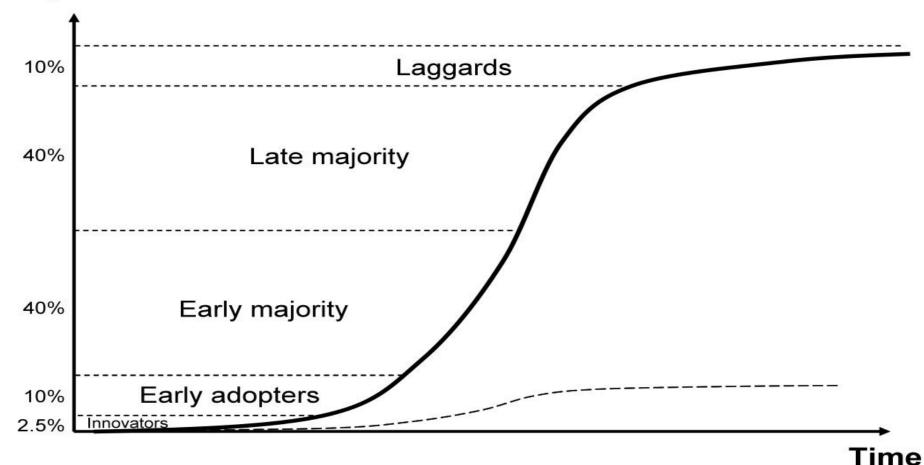
- N : Number of individuals in population
- X₊ : Number of individuals with IT
- □ : Transmission rate
- c : Contact rate

Diffusion model

Number of meetings in each time period: Nc


Probability of contagion at t+1: $(X_t/N)[(X_t-1)/N] \square$ Number of infected at t+1, i.e. X_{t+1} : $X_{t+1} = X_t + Nc \square (X_t/N)[(X-1)/N]$

Diffusion models


$(X_{t}/N)[(N - X_{t})/N]$

$(1/N)[(N-1)/N] \sim 1/N$ [(N/2)/N][(N/2)/N] = $= \frac{1}{4}$

<u>No tipping point</u>

Penetration of Target Market

SIS - model

Susceptible Infectives Susceptible-model a: rate of recovery

$$X_{t+1} = X_t + Nc \Box (X_t/N)X_t/N[(N-X_t)/N] - aX_t$$
$$= X_t(1 + (c \Box [(N-X_t)/N] - a)$$

SIS - model, continued

$X_t \text{ small : } X_{t+1} \sim X_t(1 + (c \Box - a))$ thus grows if c □ - a > 0, or equally if c □ / a > 1. Let

R_0 : Basic reproduction number $R_0 = c \Box / a$ Tipping point.

SIS, Diseases

Disease	Basic reproduction number
Measles	15
Mumps	5
Flu	3

SIS, vaccine

Let

v : ratio vaccinated

 r_0 : post-vaccination reproduction number $r_0 = R_0(1 - v)$

Thus vaccines help if,

 $R_0(1 - v) \le 1$, iff $v \ge 1 - 1/R_0$

Going back to the diseases, we then got!

Simulations on networks

Networks -> Virus on a network Biology -> Virus Biology -> AIDS

What model is better?

Markov models

In transition

Markov models

On the board:

- 2-state example, p = .8, q=.2
- Roll the numbers, with 1 and 0
- Roll the numbers using matrix, [1 0] and [0 1]

Calculate equilibria

Do example with Single, Dating and In relationship, and solve.

Markov Convergence Criteria

- 1. Finite number of states
- 2. Fixed transition probabilities
- **3.** Any state can be reached (indirectly) from all states
- 4. Not a simple cycle

For a Markov Process

Initial conditions doesn't matter History doesn't matter Intervening and changing state, it doesn't matter

We will end up at equilibrium.

Simulations on networks

Networks -> Virus on a network Biology -> Virus Biology -> AIDS

What model is better?

The end.

Tack så mycket!